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Abstract. We present a theory to establish a relation between Hahn spin-echo of a spin-1/2 particle and
quantum phase transitions in many-body systems. The Hahn echo is calculated and discussed at zero
as well as at finite temperatures. On the example of XY model, we show that the critical points of the
chain are marked by the extremal values in the Hahn echo, and can influence the Hahn echo in finite
temperatures. An explanation for the relation between the echo and criticality is also presented.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 05.70.Jk Critical point phenomena

1 Introduction

Quantum phase transitions [1] (QPTs) have attracted
enormous attention within various fields of physics in
the past decade. They exist on all length scales, from
microscopic to macroscopic. Because QPTs, which de-
scribe transitions between quantitatively distinct phases,
are driven solely by quantum fluctuations, they provide
valuable information about the ground state and nearby
excited states of quantum many-body systems. The ob-
servation of quantum criticality depends eventually on
the experimentally available temperature, then it is nat-
ural to ask how high in temperature can the effects of
quantum criticality persist? Do quantum critical points
shed light on quantum mechanics of macroscopic systems,
for instance providing a deeper understanding of decoher-
ence? In this paper we answer these questions by analyz-
ing the density matrix of a spin-1/2 particle coupled to
a many-body system. The results suggest that the Hahn
echo of the spin-1/2 particle can be used as a marker for
the criticality in the many-body system in the weak spin-
system coupling limit. As an example, we calculate the
Hahn echo of a spin-1/2 particle, taken the XY spin-chain
as the many-body system.

The Hahn echo was first introduced by Hahn [2] to
observe and measure directly transverse relaxation time
T2, i.e., the dephasing time. It differentiates from the
Loschmidt echo in that the latter measures the sensi-
tivity of quantum system dynamics to perturbations in
the Hamiltonian. For a certain regime of parameters,
the Loschmidt echo decays exponentially with a rate
given by the Lyapunov exponent of the underlying clas-
sically chaotic system. Recently, a huge interest was at-
tracted in the attempt of characterizing QPTs in terms
of entanglement, by analyzing extremal points, scaling
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and asymptotic behavior in various entanglement mea-
sures [3–7]. The relation between Berry’s phases and quan-
tum critical points was also established recently in the XY
model [8–10]. In this paper, we shall show how critical
points can be reflected in the Hahn spin-echo of a spin-1/2
particle that couples to the many-body system, and what
is the finite temperature effect on the Hahn spin-echo.

The structure of this paper is organized as follows. In
Section 2 we present a theory to calculate and analyze the
reduced density matrix of the spin-1/2 particle coupled
to a quantum many-body system, and establish a relation
between the density matrix and criticality. Two cases of
couplings are discussed in the analysis. An example, which
describes a spin-1/2 particle coupled to the XY spin chain,
to detail the representation is given in Section 3. And fi-
nally in Section 4, we present a brief remark on the low
temperature effect on the Hahn echo and conclude our
results.

2 Formulation

In this section, we will give a formalism to analyze the
reduced density matrix of a spin-1/2 particle coupled to
a quantum many-body system, and establish a relation
between the reduced density matrix of the spin and the
criticality in the quantum system. Three cases of coupling
are considered. We first consider the case where the cou-
pling conserves the energy of the spin-1/2 particle. Then
we analyze the case when the energy of the spin-1/2 par-
ticle does not conserve, but the energy of the quantum
many-body system does. Finally, we perturbatively ana-
lyze a general case where the couplings do not conserve
energies of neither the spin nor the many-body system.
The first case correspond to dephasing in the spin-1/2 par-
ticle, while the second and third kinds of coupling result
in dissipation in the particle.
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Consider the spin-1/2 particle coupled to a quantum
many-body system. The Hamiltonian that governs the
evolution of the whole system may have the form

H = Hs +Hc +Hi, (1)

where Hs = µ
2σ

z , describes the free Hamiltonian of the
spin-1/2 particle, Hc = H0 + λH1 stands for the free
Hamiltonian of the quantum system, Hi = gH2 ⊗ σz rep-
resents the couplings between them, and H2 denotes an
arbitrary operator of the quantum system. It is clear that
[Hi, Hs] = 0, therefore the energy of the spin-1/2 particle
conserves. The quantum system described by Hc under-
goes a quantum phase transition for parameter λ = λc. It
is easy to show that the time evolution operator for the
whole system may be written as

U(t) = U↑(t)| ↑〉〈↑ | + U↓| ↓〉〈↓ |, (2)

with U↑(t) and U↓(t) satisfying

i�
∂

∂t
U↑,↓(t) = H↑,↓U↑,↓(t), (3)

where
H↑/↓ = Hc ±

(µ
2

+ gH2

)
. (4)

|↑〉 and |↓〉 are eigenstates of σz . Having these expressions,
we now show that the off-diagonal elements of the reduced
density matrix of the spin-1/2 particle change dramat-
ically in the vicinity of critical points. To this end, we
assume that the spin-1/2 particle and the quantum many-
body system are initially independent, such that we take
the following product state as the initial state

|ψ(0)〉 = |ψs(0)〉 ⊗ |Gc〉, (5)

where |Gc〉〉 represent the ground state of Hc and
|ψs(0)〉 = s↑| ↑〉 + s↓| ↓〉 with |s↓|2 + |s↑|2 = 1. By a
standard calculation, we give the reduced density matrix
of the spin-1/2 particle as follows

ρs =
( |s↑|2 s↑s∗↓Γ (t)
s∗↑s↓Γ

∗(t) |s↓|2
)
. (6)

Here, Γ (t) is defined by

Γ (t) = 〈Gc|U↑(t)U
†
↓ (t)|Gc〉

= 〈Gc|e−iH↑teiH↓t|Gc〉, (7)

this expression is the survival probability of the ground
state of the quantum system under the action of the
Hamiltonian H↑ and H↓. The leading term Γ (t) �
〈G↑

c |G↓
c〉 of this equation represents the overlap function

between two ground states |G↑
c〉 and |G↓

c〉 corresponding to
two different Hamiltonian H↑ and H↓, respectively. This
overlap function was shown [16] to take extremal values in
the vicinity of critical points. Thus the Hahn echo which
characterizes the transverse relaxation time would behave
dramatically at the critical points. In fact, |Γ (t)| as a func-
tion of T2 characterizes the dephasing of the spin-1/2 par-
ticle. Thus the critical points will be reflected in the Hahn

echo that is a function of the elements of the density ma-
trix. In fact, Γ (t) also represents the Loschmidt echo which
goes exponentially to zero with the parameters approach-
ing the critical points [13], where the bath was modeled
as the Ising spin-chain and the spin to bath coupling is
of pure dephasing, while in reference [14] the bath was
described by the one-dimensional XY spin-chain. Going
beyond the case of a central spin coupled uniformly to all
the spins in the bath, Rossini et al. have studied deco-
herence induced by the spin-chain in a two-level system,
a relation between the decoherence and entanglement in-
side the chain was also established. We would like to note
that [Hc, H2] = 0 leading to [H↑, H↓] = 0. This kind of
spin-system coupling results in |Γ (t)| = 1, thus the Hahn
echo can not signal the critical points of the quantum sys-
tem.

Next we turn to study the case when the energy of the
spin-1/2 particle does not conserve, but the energy of the
many-body system does. This implies that [Hs, Hi] �= 0,
and [Hi, Hc] = 0. Without loss of generality, we consider
the following Hamiltonian

H = Hs +Hc(λ) +Hi,

Hs = ∆σz ,

Hi = (gxσ
x + gyσ

y + gzσ
z) ⊗Hc(λ). (8)

The fact that the interaction Hamiltonian Hi commutes
with Hc enables us to write the time evolution operator as

U(t) =
N∑

n=1

Un(t)|En(λ)〉〈En(λ)|, (9)

where {|En(λ)〉} are eigenstates of Hc with correspond-
ing eigenenergies {En = En(λ)}, and were assumed to be
nondegenerate. It is easy to show that

Un(t) = e−iEnte−iHnt,

Hn =
√
g2

xE
2
n + g2

yE
2
n + (∆+ gzEn)2

× eiσzγneiσxβnσze−iσxβne−iσzγn . (10)

Here,

cos(2γn) =
gy√
g2

y + g2
x

,

and

cos(2βn) =
∆+ gzEn√

E2
n(g2

x + g2
y) + (∆+ gzEn)2

.

Quantum phase transition theory tells us that the ground
state energy E0(λ) behaves dramatically in the vicinity
of the critical point λc, this would reflect in U0(t) that is
a function of E0(λ). Having established this linkage, we
claim that the final state of the spin-1/2 particle

ρs(t) =
∑

n

|cn|2Un(t)ρs(0)U †
n(t), (11)
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and the Hahn echo can signal quantum critical points
in the many-body system, provided the initial state of
the many-body system is a superposition of {|En〉}, i.e.,
|ψc(0)〉 =

∑N
n=0 cn|En〉 (c0 �= 0), and at least two cn in-

cluding c0 are not zero. We would like to notice that the
Hahn echo in the second case can not signal critical points,
if the many-body system is initially in the ground state
with probability 1. This is because the spin-system in-
teraction could not excite the many-body system in this
case. In other words, if the couplings between the spin-1/2
and the many-body system commute with the free Hamil-
tonian of the many-body system, the many-body system
would remain in its initial state if the initial state is one
of the eigenvalues of the free Hamiltonian Hc. Thus, the
many-body system would make no effect on the spin-1/2
particle during the dynamics, and consequently the Hahn-
echo could not signal the critical points of the many-body
system. This discussion holds for all cases with Hi satis-
fying [Hc, Hi] = 0.

The above discussions can be straightforwardly ex-
tended to a wide range of spin to many-body interac-
tions, as follows. Consider a general spin to many-body
system coupling Hi in equation (1), [Hi, Hc] �= 0, and
[Hi, Hs] �= 0. The time evolution operator U(t) in this
case could not be written in neither equation (2) nor equa-
tion (9). But it may take the form,

U(t) =
∑
α,β

Uαβ(t)|α〉〈β|, (12)

with α, β =↑, ↓. This is a general case without restriction
on Hi. It is easy to show that Uαβ(t) satisfy

i�
∂

∂t
Uαβ(t) =

(
Hc +

µα

2
+ 〈αHi|α〉

)
Uαβ(t)

+ 〈ᾱ|Hi|α〉Uᾱβ(t), (13)

where Hs|α〉 = µα

2 |α〉, ᾱ =↑, ↓ and ᾱ �= α. In order to
keep the critical properties of the many-body system un-
changed, small coupling Hi is required. This leads to

Uαβ(t) � U
(0)
αβ (t) = e−

i
�
(Hc+ µα

2 +〈α|Hi|α〉)t. (14)

To get this result, terms with 〈ᾱ|Hi|α〉 had been ignored.
Up to first order in 〈ᾱ|Hi|α〉, Uαβ(t) is

U
(1)
αβ (t) � U

(0)
αβ (t)(1 + δ̂), (15)

where δ̂ = 〈ᾱ|Hi|α〉(〈ᾱ|Hi|α〉)†
〈α|Hi|α〉−〈ᾱ|Hi|ᾱ〉+0.5(µα−µᾱ) . We note that

〈α|Hi|α〉 is an operator for the many-body system. There-
fore, the ground state of the many-body system will be
perturbed by 〈α|Hi|α〉 and δ̂, resulting in sharp changes
in the elements of the reduced density matrix at the criti-
cal points. This can be shown by calculating the elements
of the reduced density matrix ρs as,

ραβ
s (t) = 〈α|ρs(t)|β〉 =

∑
µ,ν=↑,↓

〈Gc|Uαµ(t)U †
βν(t)|Gc〉sµs

∗
ν ,

(16)

with the same initial state as in equation (5). As we ana-
lyzed before, 〈Gc|Uαµ(t)U †

βν(t)|Gc〉 represents the overlap
function between two ground states with two different val-
ues of parameters. This overlapping function behaves dra-
matically at the critical points, leading to sharp changes
in Hahn echo in the vicinity of critical points.

3 Example

In this section, we will present two examples to detail the
general formalism. The first example represents the spin-
1/2 particle dephasingly coupling to the quantum many-
body system, while the second one shows the Hahn echo
of the spin-1/2 particle dissipatively coupling to the quan-
tum system.

We start with the first example, where a spin-chain
described by the one-dimensional XY model is taken as
the quantum many-body system, the Hamiltonian for the
total system (spin-1/2 particle+chain with dephasing in-
teractions) may be given by

H = Hs +Hc +Hi, (17)

where

Hs = µsz,

Hc = −2
N∑

l=1

((1 + γ)sx
l s

x
l+1 + (1 − γ)sy

l s
y
l+1 + λsz

l ),

Hi = 4g
N∑

l=1

szsz
l . (18)

Here s denotes spin operator of the system particle which
couples to the chain spins sl (l = 1, ..., N) located at the
lattice site l. The spins in the chain are coupled to the
system particle through a constant g. The Hahn echo ex-
periments consists in preparing the system spin in the ini-
tial state |ys〉 = (| ↑〉 + i| ↓〉)/√2, and then allowing free
evolution for time τ . A π-pulse described by the Pauli op-
erator σx is then applied to the system spin, and after
free evolution for one more interval τ an echo is observed,
which provides a direct measurement of single spin co-
herence. We would like to notice that the free evolution
here means no additional driving fields exist, the coupling
between the system and the spin-chain is always there.

We now follow the calculation [11] to derive an exact
expression for the Hahn echo decay due to the system-
chain couplings in equation (17). The density matrix for
the whole system which will be used to calculate the Hahn
echo is given by

ρ(τ) = U(τ)ρ0U
†(τ), (19)

where U(τ) denotes the evolution operator [11]

U(τ) = u(τ)σxu(τ), u(τ) = e−iHτ , (20)

and ρ0 is taken to be the initial state of the whole system

ρ0 = |ys〉〈ys| ⊗ ρc(0) (21)
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with ρc(0) denoting the initial state for the spin-chain.
The Hahn spin echo envelope is then given by

vE(τ) = 2|Tr{(sx + isy)ρ(τ)}|. (22)

In order to get an explicit expression for the Hahn echo en-
velope equation (22), we first write u(τ) in basis {| ↑〉, | ↓〉}
(the eigenstates of σz), by noting that [Hs, Hi] = 0. This
leads to

u(τ) =
∑

j=↑,↓
uj(τ)|j〉〈j|, (23)

with uj(τ) satisfying,

i�
∂

∂t
uj(t) = Hjuj(t),

Hj = −2
N∑

l=1

((1+γ)sx
l s

x
l+1+(1−γ)sy

l s
y
l+1+λjs

z
l ), (24)

where λj = λ± g, + and − correspond to ↓ and ↑, respec-
tively. The free energy µ of the system which contributes
only energy shifts to Hj would not affect the Hahn echo
and has been omitted hereafter. For the system initially in
state |j〉 (j =↑, ↓), the dynamics and statistical properties
of the spin-chain would be govern by Hj , it takes the same
form as Hc but with perturbed field strengths λj . This
perturbation to the spin-chain regardless of how small it
is can be reflected in the Loschmidt spin echo decay [13],
in particular at critical points. What behind the decay is
the orthogonalization between two ground states obtained
for two different values of external parameters [16]. The
Hamiltonian Hj can be diagonalized by a standard proce-
dure to be

Hj =
∑

k

ωj,k

(
η†j,kηj,k − 1

2

)
, (25)

which can be summarized in the following three steps. (1)
The Wigner-Jordan transformation, which converts the
spin operators into fermionic operators via the relation
al = (

∏
m<l σ

z
m)(σx

l + iσy
l )/2, where σl is the Pauli ma-

trix of the spin at site l; (2) the Fourier transformation,
dk = 1√

N

∑
l alexp(−i2πlk/N); and (3) the Bogoliubov

transformation, which defines the fermionic operators,

ηj,k = dk cos
θj,k

2
− id†−k sin

θj,k

2
, (26)

where the mixing angle θj,k was defined by cos θj,k =

εj,k/ωj,k, with ωj,k =
√
ε2j,k + γ2 sin2 2πk

N , and εj,k =

(cos 2πk
N − λj), k = −N/2,−N/2 + 1, ..., N/2 − 1. In this

paper, we focus our attention on the periodic boundary
condition, and the boundary term was ignored [17]. It
is easy to show that [ηi,k, ηj,k] �= 0 when j �= i, i.e.,
the modes ηi,k and ηj,k do not commute (this is not the
case for some special parameters discussed later on). This
would result in the Hahn echo decay as you will see.
With these results, the evolution operator U(τ) can be
reduced to

U(τ) = u↑(τ)u↓(τ)| ↑〉〈↓ | + u↓(τ)u↑(τ)| ↓〉〈↑ |,
(27)

where uj(τ)=e−i
∑

k ωj,k(η†
j,kηj,k− 1

2 )τ ≡ ∏
k uj,k(τ), j =↑, ↓

, and uj,k(τ) = e−iωj,k(η†
j,k

ηj,k− 1
2 )τ . After a simple algebra,

we arrive at

vE(τ) = |Trc(u
†
↓u

†
↑u↓u↑ρc(0))|, (28)

where the trace is taken over the spin-chain. equation (28)
can be simplified by noting that (nj,k = η†j,kηj,k)

[n↑,k, n↓,k] =
i

2
sin(θ↑,k − θ↓,k)(η−kηk − η†kη

†
−k), (29)

and consequently,

u†↑,ku↓,k = u↓,ku
†
↑,k + X̂k, (30)

where X̂k = (1−eiω↑,kt)(1−e−iω↓,kt)[n↑,k, n↓,k]. Here ηk =
dk cos θk

2 − id†−k sin θk

2 , and θk = θj,k|λj=λ. Substituting
equation (30) into vE(τ), we get

vE(τ) =
∏
k

|1 + Trc[u
†
↓,kX̂ku↑,kρc(0)]|. (31)

The explicit expression for equation (31) can be obtained
by choosing a specific initial state of the chain. We shall
consider two initial states in this paper, (1) ρc(0) is taken
to be the fermionic vacuum state of Hc, (2) ρc(0) is chosen
to be a thermal state for the spin-chain. The fermionic
vacuum state is exactly the ground state of Hc except
γ = 0 [12], so the Hahn echo can signal the ground state
properties in the many-body system. The fermionic vac-
uum state of Hc follows by the same steps summarized
above. It is defined as the state to be annihilated by each
operator ηk, namely ηk|g(γ, λ)〉 = 0. After a few manipu-
lations we obtain the Hahn echo envelope at zero temper-
ature,

vE(t) =
∏
k

∣∣∣1 +
1
4

sin(θ↑,k − θ↓,k) sin(θk − θ↑,k)|1 − eiω↑,kt|2

×
(
1 − e−iω↓,kt − sin2 θk − θ↓,k

2
|1 − eiω↓,kt|2

)

− 1
4

sin(θ↑,k − θ↓,k) sin(θk − θ↓,k)|1 − eiω↓,kt|2

×
(
1 − eiω↑,kt − sin2 θk − θ↑,k

2
|1 − eiω↑,kt|2

)∣∣∣. (32)

With the above expressions, we now turn to study the
Hahn echo at zero temperature. Since the XY model is
exactly solvable and still present a rich structure, it of-
fers a benchmark to test the properties of Hahn echo in
the proximity of a quantum phase transition. For the XY
model one can identify the critical points by finding the
regions where the energy gap ωk vanishes. Indeed, there
are two regions in the λ, γ space that are critical. Namely,
γ = 0 for −1 < λ < 1, and λ = ±1 for all γ. We first
focus on the criticality in the XX model. The XX model
that corresponds to γ = 0 has a criticality regime along
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Fig. 1. (Color online) Hahn echo of the spin-1/2 particle vs.
time τ and the anisotropy parameter γ. The spin-1/2 particle
was coupled to a spin-chain described by the XY model. The
parameters chosen are N = 246 sites, g = 0.3 and (a) λ = 2,
(b) λ = 1.5, (c) λ = 1, and (d) λ = 0.5.

the lines between λ = 1 and λ = −1 [18]. The critical
points can be read out from the Hahn echo as shown in
Figures 1 and 2. Figure 1 shows the Hahn echo as a func-
tion of time τ and the anisotropy parameter γ. Clearly,
the Hahn echo takes a sharp change in the limit γ → 0,
this results can be understood by considering the value
of θj,k and θk, which take 0 or π depending on the sign
of cos(2πk/N) − λj and cos(2πk/N) − λ, respectively. In
either case, sin(θk − θj,k) = sin(θ↑,k − θ↓,k) = 0, this leads
to vE(τ) = 1. Physically, when γ = 0, the particle num-
ber operators n↑,k and n↓,k commute, which implies that
the perturbation from the system to the spin-chain does
not excite the spin-chain, then the Hahn echo which char-
acterizes the dephasing of the system remains unit. Fig-
ure 2 shows the Hahn echo vE(τ) in the vicinity of critical
points γ → 0 and λ = ±1. A sharp change among the line
of λ = ±1 appears clearly.

We would like to notice that the Hahn echo vE(τ) at
critical points of γ = 0 and λ = ±1 does not depend on
the chain-system coupling constant g, but in the vicinity
of γ = 0, it does. This was shown in Figure 3, where
we plotted the Hahn echo as a function of λ and g with
γ = 0.001 (close to zero). As expected, the critical points
have been shifted linearly by the coupling constant g. The
white area in Figure 3 corresponds to vE(τ) = 1. In the
region of g > 2 and −1 < λ < 1, vE(τ) always equal to 1.
This can be understood by examining the the definition
of θj,k and θk. In this region, λj = λ ± g ≥ 1, leading to
θj,k = θk for any k in the limit γ → 0. This results in
vE(τ) = 1, which is a direct followup of equation (32).

Now we turn to study the criticality in the transverse
Ising model (γ = 1 in the XY model). The ground state
structure of this model change dramatically as the param-
eter γ is varied. We first summarize the ground states of
this model in the limits of |λ| → ∞, |λ| = 1 and λ = 0.
The ground state of the spin-chain approaches a product
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Fig. 2. (Color online) Hahn echo as a function of time τ and
λ. The figure was plotted for N = 246 sites, g = 0.1 and
γ = 0.001.
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Fig. 3. (Color online) This figure was plotted to show the
dependence of the critical points on the system-chain coupling
constant g. Time τ = 50, N = 246 sites, and γ = 0.001 were
chosen for this figure.

of spins pointing the positive/negative z direction in the
|λ| → ∞ limit, whereas the ground state in the limit λ = 0
is doubly degenerate under the global spin flip by

∏N
l=1 σ

z
l .

At |λ| = 1, a fundamental transition in the ground state
occurs, the symmetry under the global spin flip breaks at
this point and the chain develops a nonzero magnetization
〈σx〉 �= 0 which increases with λ growing. The above men-
tioned properties of the ground state are reflected in the
Hahn echo as shown in Figure 4. In the limit |λ| → ∞,
θj,k = θk = π/(−π), this results in vE(τ) = 1. In fact
as Figure 4a shows, when |λ| ≥ 4, vE(τ) approaches 1
very well. With |λ| → 1, the Hahn echo vE(τ) tends to
zero, this can be interpreted as the sensitivity of the spin-
chain ground state to perturbations from the system-chain
coupling at these points. The Hahn echo is a oscillating
function of time τ around λ = 0. Due to the coupling to
the spin-chain, the oscillation is damping, and eventually
vE(τ) tends to zero in the τ → ∞ limit. The difference
between cases of γ = 0 and γ = 1 is that [n↑,k, n↓,k] = 0
for γ = 0, but it does not hold for γ = 1. This is the reason
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Fig. 4. (Color online) (a) Hahn echo versus time τ and λ with
γ = 1. The other parameters chose are g = 0.1, N = 246 sites.
(b) Discrete Fourier transformation of vE(τ ), with the same
parameters as in (a).
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Fig. 5. (Color online) Hahn echo at time τ = 20 with (a)
N = 250, (b) N = 1250, (c) N = 2500, (d) N = 10000 sites,
and g = 0.01.

why the Hahn echo takes different values at these critical
points. Figure 4b is a discrete Fourier transformation of
vE(τ) with the same parameters as in Figure 4a. It would
provides us the Hahn echo in the frequency domain. The
ground state of the XY model is really complicated with
many different regime of behavior [19], these are reflected
in sharp changes in the Hahn echo across the line |λ| = 1
regardless of γ (as shown in Fig. 5), indicating the change
in the ground state of the spin-chain from paramagnetic
phase to the others.

The above connection between the Hahn echo and the
criticality exists in a more general model with spin-system

interactions

Hi = 4
N∑

l=1

sz(gz
l s

z
l + gx

l s
x
l + gy

l s
y
l ), (33)

where gx
l , g

y
l , and gz

l are coupling constants. The spin-
system interaction equation (33) is general under the re-
striction [Hi, Hs] = 0 that we made in this example.
The evolution operator U(τ) still takes the form of equa-
tions (20) and (23), but with

H± = −2
N∑

l=1

[(1 + γ)sx
l s

x
l+1 + (1 − γ)sy

l s
y
l+1 + λsz

l

± (gz
l s

z
l + gx

l s
x
l + gy

l s
y
l )], (34)

instead of equation (23). It is easy to show that the Hahn
echo can be written as

vE(τ) = |〈Gc|e−iH−τeiH+τ |Gc〉|2. (35)

For small coupling constants gx
l , g

y
l and gz

l , it has been
proved that the overlapping |〈Gc|e−iH−τeiH+τ |Gc〉| would
well signal the critical points in the one-dimensional XY
model, leading to the claim that the Hahn echo vE(τ)
can be used as a marker for criticality. We discuss now
the finite-N effect on the Hahn echo in this model. For
this purpose, we reexamine the Hahn echo vE(τ) given by
equation (32), which is a product of N terms. Noticing
that each term is positive and smaller than 1, we claim
that with N increasing, the changes in the vicinity of the
critical points become sharper. To confirm this, we plot
vE(τ) versus γ and λ with a fixed τ = 20 and several N
in Figure 5. Clearly, the larger N the sharper the change
in the vicinity of γ = 0 and |λ| = 1. This conclusion holds
for different τ.

Next, we consider the second example where the spin-
quantum system coupling Hi does not commute with the
free Hamiltonian of the spin-1/2 particle, indicating that
the energy of the spin-1/2 particle is not conserved. We
will calculate the Hahn echo according to the general for-
malism presented in Section 2. The one-dimensional XY
spin chain is still chosen as the quantum system, while
the spin-system coupling Hi takes the same form in equa-
tion (8). To simplify the calculation, we chose |ψc(0)〉 =
c0|E0〉 + c1|E1〉 (|c0|2 + |c1|2 = 1) as the initial state of
the many-body system, where |E0〉 and |E1〉 denote the
ground state and first excited state of the free many-body
system Hc(λ), respectively. The spin-1/2 particle initially
is prepared in the state |ys〉 = 1/

√
2(| ↑〉 + i| ↓〉), as we

did in the first example. The Hahn echo can then be ex-
pressed as

vE(τ) = 2|Tr(σ+ρs(τ))|, (36)

where

ρs(τ) = u(τ)σxu(τ)|ys〉〈ys|u†(τ)σxu†(τ),

u(τ)(...)u†(τ)= |c1|2U1(τ)(...)U
†
1 (τ)+|c0|2U0(τ)(...)U

†
0 (τ),
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Fig. 6. (Color online) Hahn echo at time (a) τ = 30, (b)
τ = 100, (c) τ = 200 and (d) τ = 1000 with N = 246 sites,
and gx = gy = gz = 0.1 and c0 = c1 = 1√

2
.

and Uj(τ) = e−iHjτ , j = 0, 1. Hj was given in equa-
tion (10). We have performed extensive numerical simula-
tions, selective results are presented in Figure 6. Figure 6a
was plotted for the Hahn spin-echo vE(τ) as a function of
λ and γ at time τ = 30. It shows that vE(τ) = 1 at γ = 0
or |λ| = 1, otherwise vE(τ) < 1. Figures 6b–6d are for
τ = 100, 200, and 1000, respectively. Clearly, vE(τ) = 1
with γ = 0 or |λ| = 1. These results tell us that the Hahn
echo can well signal the critical points γ = 0 and |λ| = 1.
The longer the time τ , the sharper the change of vE(τ)
in the vicinity of the critical points. The same finite-N ef-
fect as in the first example can be found in our numerical
simulations for this model.

4 Remarks on low temperature effects
and conclusion

Up to now, we did not consider the temperature effect.
Finite temperature is the regime to which all experiments
being confined, but what is the finite temperature effect
on the Hahn echo? In the following, we shall consider this
problem by studying the contributions of one- and two-
particle excitations to the Hahn echo. The coupling of the
spin-1/2 particle to the spin-chain is of pure dephasing.
Taking a thermal state ρT

c (0) = 1
z e

−βHc (β = 1
kBT ) as the

initial state of the spin-chain, the Hahn echo envelope can
be written as

vT
E(τ) =

∏
k

|1 +
1
z

∑
n

e−βΩn〈n|u†↓,kX̂ku↑,k|n〉|, (37)

where |n〉 and Ωn denote the eigenstate and correspond-
ing eigenvalue of Hc, respectively. z is the partition func-
tion. We shall restrict our consideration to the contribu-
tion from one- and two-particle excitations of the chain,
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Fig. 7. (Color online) Contribution of the two-particle exci-
tation to Hahn echo at time τ = 40. The other parameters
chosen are N = 246 sites, γ = 0.01, and g = 0.02.

namely,

|n〉 ∈ {η†j,k|g(γ, λ)〉, η†i,k1
η†j,k2

|g(γ, λ)〉},
for k1 �= k2, or i �= j, (38)

with k, k1 and k2 ranging from −N/2 to N/2 − 1. It is
not difficult to show that there are no contribution from
the one particle excitation, because X̂k creates or annihi-
lates two particles with k and −k jointly. The numerical
results presented in Figure 7 show the contribution of the
two-particle excitation to the Hahn echo, we find that the
quantum critical points can influence the Hahn echo at a
finite temperature. For the parameters chosen in Figure 7,
the contribution form the thermal excitation is larger than
that from quantum fluctuation when β < 72 = βc. Here
we have scaled out an overall energy scale denoted by J . J
may be taken to be of order 1000 K, that is the order for
the antiferromagnetic exchange constant of the Heisenberg
model. It yields Tc ∼ 14 K corresponding to parameters
chosen in Figure 7. For the transverse Ising model γ = 1,
βc is of order 10, we obtain Tc ∼ 100 K in this situation
with the other parameters being the same as in Figure 7.
Notice that the study here is based on the Hahn echo (a
dynamical quantity), this would differ from the investi-
gation based on thermodynamics [20]. We would like to
notice that the discussion on the finite temperature ef-
fect was limited to very low temperatures, because only
one- and two-quasiparticle excitations were included. Nev-
ertheless, it is interesting because it also sheds light on the
contribution to Hahn echo from the first excited states,
which have the same energy as the ground state ρc(0) of
Hc at critical points. The results presented in Figure 7
show that those contributions tend to zero with T → 0.

In conclusion, by discussing the Hahn spin echo in the
spin-1/2 particle coupled to the many-body systems, the
relation between the Hahn echo and the critical points
was established. The relation not only provides an effi-
cient theoretical tool to study quantum phase transitions,
but also proposes a method to measure the critical points
in experiments. Up to two-particle excitations, we have
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also studied the influence of thermal fluctuation on the
Hahn echo, it would shed light on the low temperature
(with respect to the overall energy scale J) effects on the
Hahn echo. The limitation of this discussion is that the
coupling between the spin and the quantum system is as-
sumed weak, and as we have shown, the Hahn echo could
not reflect the critical points of the quantum system that
is initially in its ground state with spin-system coupling
satisfying [Hc, Hi] = 0.

This work was supported by NCET of M.O.E, and NSF of
China under Grant Nos. 60578014 and 10775023.

References

1. S. Sachdev, Quantum Phase Transition (Cambridge
University Press, Cambridge, 1999)

2. E.L. Hahn, Phys. Rev. 80, 580 (1950)
3. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608

(2002)
4. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett.

90, 227902 (2003)
5. L.A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93,

250404 (2004)
6. Y. Chen, P. Zanardi, Z.D. Wang, F.C. Zhang, New J. Phys.

8, 97 (2006), see also e-print arXiv:quant-ph/0407228
7. S.J. Gu, G.S. Tian, H.Q. Lin, New J. Phys. 8, 61 (2006),

see also e-print arXiv:quant-ph/0509070
8. A. Carollo, J.K. Pachos, Phys. Rev. Lett. 95, 157203

(2005)
9. S.L. Zhu, Phys. Rev. Lett. 96, 077206 (2006)

10. A. Hamma, e-print arXiv:quant-ph/0602091
11. W.M. Witzel, R. de Sousa, S. Das Sarma, Phys. Rev. B

72, 161306 (2005)
12. The fermionic vacuum state is the ground state of Hc. This

is not true for γ = 0 because the ground state in this case
includes all excitations with negative energy. As our goal
in this paper is to establish a relation between the Hahn
echo and quantum criticality, the conclusion could not be
affected by choosing the fermionic vacuum state of H0 as
the initial state, in particular in the parameter regime we
are interested in

13. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys.
Rev. Lett. 96, 140604 (2006)

14. Y.C. Ou, H. Fan, J. Phys. A 40, 2455 (2007)
15. D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, R.

Fazio, Phys. Rev. A 75, 032333 (2007)
16. P. Zanardi, N. Paunkovic, Phys. Rev. E 74, 031123

(2006); P. Zanardi, M. Cozzini, P. Giorda, e-print
arXiv:quant-ph/0606130

17. The boundary term Hb = −(a†
1aN + a†

Na1 + γ(a†
Na†

1 +

h.c.))(P + 1) with P = exp(iπ
∑N

j=1 a†
jaj) would vanish

when N/2 is odd (N =
∑N

j=1 a†
jaj). Since the paper aims

at finding the link between the Hahn echo and the critical
points. We will chose N large to simplify the boundary
effects, because in the limit N → ∞, the boundary effects
are negligible. For further detail, please see, E. Lieb, T.
Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)

18. For any initial state of the spin-chain, vE(τ ) = 1 for γ = 0.
This can be found in equation (31)

19. E. Barouch, B.M. McCoy, Phys. Rev. 2, 1075 (1970); E.
Barouch, B.M. McCoy, Phys. Rev. A 3, 786 (1971)

20. A. Kopp, S. Chakravarty, Nature Phys. 1, 53 (2005)


